วันพุธที่ 9 กันยายน พ.ศ. 2558

บทที่ 1 เซต

    เซต   ใช้แทนกลุ่มของคน,สัตว์,สิ่งของ หรือสิ่งที่เราสนใจ เราใช้เครื่องหมายปีกกา“{ } ”
แสดงความเป็นเซต และสิ่งที่อยู่ภายในปีกกา  เราเรียกสมาชิกของเซต
เซตที่เท่ากัน 
เซต 2 เซตจะเท่ากันก็ต่อเมื่อจำนวนสมาชิกและสมาชิกของทั้ง 2 เซต เหมือนกันทุกตัว
เช่น A={1,2,3}          B={1,2,3}     จะได้ A=B
เซตที่เทียบเท่ากัน 
เซต 2 เซตจะเทียบเท่ากันก็ต่อเมื่อ จำนวนสมาชิกของทั้ง 2 เซต เท่ากัน
เช่น  A={a,b,c}   ,     B={1,2,3}
จำนวนสมาชิกของ A= จำนวนสมาชิกของ B= 3 ตัว
n( A ) = n ( B ) = 3 
ดังนั้น A  เทียบเท่ากับเซต B
เซตจำกัด 
เซตใดๆเป็นเซตจำกัดก็ต่อเมื่อ เรารู้จำนวนสมาชิกของเซตนั้นแน่นอน
เช่น  A={1,2,3,…,100}  จะได้ n(A)=100        A เป็นเซตจำกัด
เซตอนันต์ 
เซตใดๆ จะเป็นเซตอนันต์ ก็ต่อเมื่อ จำนวนสมาชิกของเซตนั้นมากจนหาค่าไม่ได้
เช่น A={1,2,3,…}   จะได้ A เป็นเซตอนันต์
เซตว่าง 
เซตว่าง คือ เซตที่ไม่มีสมาชิกอยู่เลย เช่น { } = 0    อ่านเพิ่มเติม


ไม่มีความคิดเห็น:

แสดงความคิดเห็น